Part:BBa_K4268003
S-TIP37 Capsid Protein with Biotin Tag
Usage and Biology
S-TIP37 is a T7-like cyanophage that infects its host via a lytic life cycle (Shitrit et al., 2021). T7-like phages are characterized by a complex symmetrical capsid structure, which includes an icosahedral head that houses the phage's genome, and an internal core region that stabilizes the packaged DNA inside the head. A neck region that facilitates DNA delivery into a host, and six tail fibers used for attachment to its host (Raytcheva et al., 2011).
This part belongs to a collection that codes for a "ghost" phage. This ghost phage is a capsid-only, empty viral shell that could be modified to immobilize Cyanobacteria recognized by the viral tail fibers, or used with modification to deliver substances to a chassis Cyanobacteria.
However, it will infect Synechococcus sp WH 8109, the cyanobacteria strain that is the natural host of S-TIP37. Further modeling will be needed to determine if the "ghost" phage could effectively target other strains of Cyanobacteria that are used in synthetic biology, such as Synechococcus sp PCC 11901.
This part combines the Capsid Protein gene (gp33) which has been provisionally identified, with a biotin tag to form the Capsid Protein with Biotin Tag part. The sequence of this tag, along with a 6 amino acid linker was taken from the literature (Edgar et. al. 2006, Stoltz et al. 1991). This part codes for one of the proteins that are responsible for building the icosahedral capsid. To meet a need in the community for immobilizing cyanobacteria, this part was developed to have the addition of a biotin tag. The use of a biotin-streptavidin bond in our phage will immobilize the cyanobacteria that have been bonded to the phages.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 682
- 1000COMPATIBLE WITH RFC[1000]
References
Edgar, R., McKinstry, M., Hwang, J., Oppenheim, A. B., Fekete, R. A., Giulian, G., Merril, C., Nagashima, K., & Adhya, S. (2006). High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4841–4845. https://doi.org/10.1073/pnas.0601211103
Kemp P, Garcia LR, Molineux IJ. Changes in bacteriophage T7 virion structure at the initiation of infection. Virology. 2005 Sep 30;340(2):307-17. doi: 10.1016/j.virol.2005.06.039. PMID: 16054667.
Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011 Mar;85(5):2406-15. doi: 10.1128/JVI.01601-10. Epub 2010 Dec 22. PMID: 21177804; PMCID: PMC3067778.
Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, Schwartz DA, Chisholm SW, Lindell D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022 Feb;16(2):488-499. doi: 10.1038/s41396-021-01085-8. Epub 2021 Aug 24. PMID: 34429521; PMCID: PMC8776855.
Stolz, J., Ludwig, A., & Sauer, N. (1998). Bacteriophage lambda surface display of a bacterial biotin acceptor domain reveals the minimal peptide size required for biotinylation. FEBS letters, 440(1-2), 213–217. https://doi.org/10.1016/s0014-5793(98)01454-9
None |